New Currents in Electrical Stimulation of Excitable Tissues

Author:

Basser Peter J.1,Roth Bradley J.2

Affiliation:

1. Section on Tissue Biophysics & Biomimetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5772;

2. Department of Physics, Oakland University, Rochester, MI 48309-4487;

Abstract

▪ Abstract  Electric fields can stimulate excitable tissue by a number of mechanisms. A uniform long, straight peripheral axon is activated by the gradient of the electric field that is oriented parallel to the fiber axis. Cortical neurons in the brain are excited when the electric field, which is applied along the axon-dendrite axis, reaches a particular threshold value. Cardiac tissue is thought to be depolarized in a uniform electric field by the curved trajectories of its fiber tracts. The bidomain model provides a coherent conceptual framework for analyzing and understanding these apparently disparate phenomena. Concepts such as the activating function and virtual anode and cathode, as well as anode and cathode break and make stimulation, are presented to help explain these excitation events in a unified manner. This modeling approach can also be used to describe the response of excitable tissues to electric fields that arise from charge redistribution (electrical stimulation) and from time-varying magnetic fields (magnetic stimulation) in a self-consistent manner. It has also proved useful to predict the behavior of excitable tissues, to test hypotheses about possible excitation mechanisms, to design novel electrophysiological experiments, and to interpret their findings.

Publisher

Annual Reviews

Subject

Biomedical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3