Affiliation:
1. From the Department of Anatomy and Cell Biology (P.A.R., C.D.L.), and the Vascular Biology Center (C.D.L.), University of Kansas Medical Center, Kansas City, Kans.
Abstract
In recent years, there has been a sustained interest in vascularization processes. Much, if not all, of the work has included the concept of new vessel morphogenesis. Surprisingly, most of the work has not addressed developmental mechanisms directly, but rather as an offshoot of a disease process, wound healing process, or from the perspective of inducing vessels in an ischemic site. One theme has dominated the various studies on capillary or endothelial tube morphogenesis—integrin-mediated cell behavior. Integrin biology impacts virtually every known step of nascent vessel formation. In this review article, we attempted to summarize key findings from the viewpoint of developmental biologists/morphologists. We also attempted to summarize and contrast data obtained using integrin gene ablation approaches in mice with other experimental systems. It is hoped this review will provide a distinct cell biological perspective to vascular scientists from the clinical, molecular, and tissue engineering communities.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献