Dynamically regulated Focal adhesions coordinate endothelial cell remodelling in developing vasculature

Author:

Chau Tevin CY.,Yordanov Teodor E.,Silva Jason A. da,Paterson Scott,Yap Alpha S.,Hogan Benjamin M.,Lagendijk Anne Karine

Abstract

ABSTRACTThe assembly of a mature vascular network involves the coordinated control of cell shape changes to regulate morphogenesis of a complex vascular network. Cellular changes include a process of endothelial cell (EC) elongation which is essential for establishing appropriately sized lumens during vessel maturation1-3. However how EC elongation is dynamically regulated in vivo is not fully understood since live monitoring of this event can be challenging in animal models. Here, we utilise the live imaging capacity of the zebrafish to explore how integrin adhesion complexes, known as Focal Adhesions (FAs), control EC dynamics in live flow pressured vasculature. To do this, we generated a zebrafish mutant, deficient for the integrin adaptor protein Talin1. Notably, unlike the severe cardiovascular defects that arise in Talin1 knockout mice4, vasculogenesis still occurs normally talin1 mutants and cardiac output remains sufficient up to two days post fertilisation (dpf). This allowed us to uncouple primary roles for FAs in ECs during subsequent morphogenesis events, including angiogenesis and vessel remodelling, without interference of secondary effects that might occur due to systemic vessel failure or loss of blood flow. We further established a FA marker line, expressing endothelial Vinculin-eGFP, and demonstrated that FAs are lost in our talin1 mutants. This Vinculin transgene represents the first in vivo model to monitor endothelial FA dynamics. Loss of FAs in talin1 mutants, leads to compromised F-actin rearrangements, which perturb EC elongation and cell-cell junction linearisation during vessel remodelling. Chemical induction of actin polymerisation can restore these cellular phenotypes, suggesting a recovery of actin rearrangements that are sufficient to allow cell and junction shape changes. Together, we have identified that FAs are essential for active guidance of EC elongation and junction linearisation in flow pressured vessels. These observations can explain the severely compromised vessel beds, haemorrhage and vascular leakage that has been observed in mouse models that lack integrin signalling4-8.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3