Endothelial β1 Integrins are Necessary for Microvascular Function and Glucose Uptake

Author:

Winn Nathan C.ORCID,Roby Deborah A.ORCID,McClatchey P. MasonORCID,Williams Ian M.,Bracy Deanna P.,Bedenbaugh Michelle N.,Lantier LouiseORCID,Plosa Erin J.ORCID,Pozzi AmbraORCID,Zent RoyORCID,Wasserman David H.ORCID

Abstract

AbstractMicrovascular insulin delivery to myocytes is rate limiting for the onset of insulin-stimulated muscle glucose uptake. The structural integrity of capillaries of the microvasculature is regulated, in part, by a family of transmembrane adhesion receptors known as integrins, which are composed of an α and β subunit. The integrin β1 (itgβ1) subunit is highly expressed in endothelial cells (EC). EC itgβ1 is necessary for the formation of capillary networks during embryonic during development and its knockdown in adult mice blunts the reactive hyperemia that manifests during ischemia reperfusion. In this study we investigated the contribution of skeletal muscle EC itgβ1 in microcirculatory function and glucose uptake. We hypothesized that loss of EC itgβ1 would impair microvascular hemodynamics and glucose uptake during insulin stimulation, creating ‘delivery’-mediated insulin resistance. An itgβ1 knockdown mouse model was developed to avoid lethality of embryonic gene knockout and the deteriorating health resulting from early post-natal inducible gene deletion. We found that mice with (itgβ1fl/flSCLcre) and without (itgβ1fl/fl) inducible stem cell leukemia cre recombinase (SLCcre) expression at 10 days post cre induction have comparable exercise tolerance and pulmonary and cardiac functions. We quantified microcirculatory hemodynamics using intravital microscopy and the ability of mice to respond to the high metabolic demands of insulin-stimulated muscle using a hyperinsulinemic-euglycemia clamp. We show that itgβ1fl/flSCLcre mice compared to itgβ1fl/fllittermates have, i) deficits in capillary flow rate, flow heterogeneity, and capillary density; ii) impaired insulin-stimulated glucose uptake despite sufficient transcapillary insulin efflux; and iii) reduced insulin-stimulated glucose uptake due to perfusion-limited glucose delivery. Thus, EC itgβ1 is necessary for microcirculatory function and to meet the metabolic challenge of insulin stimulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3