The Effect of Insulin on the Disposal of Intravenous Glucose: Results from Indirect Calorimetry and Hepatic and Femoral Venous Catheterization

Author:

DeFronzo R A1,Jacot E1,Jequier E1,Maeder E1,Wahren J1,Felber J P1

Affiliation:

1. Department of Medicine, Yale University School of Medicine New Haven, Connecticut Division of Clinical Biochemistry C.H.U.V., 1011 Lausanne Division of Clinical Physiology, University of Lausanne Switzerland Clinical Physiology Laboratory, Huddinge Hospital, and the Karolinska Institute Stockholm, Sweden

Abstract

The effect of insulin on the disposal of intravenous glucose was examined employing the euglycemic insulin clamp technique in 24 normal subjects. When the plasma insulin concentration was raised by approximately 100 μU/ml, total glucose metabolism rose to 6.63 ± 0.38 mg/kg · min. Basal splanchnic (hepatic venous catheter technique) glucose production, 2.00 increased only slightly. These results suggest that the ability of higher doses of insulin to further stimulate glucose metabolism is primarily the result of increased glucose storage by peripheral tissues, most likely muscle. 0.15 ± mg/kg · min, reverted to a small net glucose uptake which averaged 0.33 mg/kg · min over the ensuing 2 h. This represented only 5% of the total glucose metabolized. In contrast, leg (femoral venous catheterization) glucose uptake rose from 1.18 ± 0.14 to 8.40 ± 1.06 mg/kg of leg wt. per min. If all muscles in the body respond similarly to those in the leg, muscle would account for 85% of the total glucose metabolism. To determine the relative contributions of glucose oxidation versus glucose storage by peripheral tissues following hyperinsulinemia, we performed euglycemic insulin clamp studies in combination with indirect calorimetry. Basal glucose oxidation, 1.21 ± 0.10 mg/kg min, rose to 2.28 ± 0.16 (P < 0.01), and this increase above baseline accounted for only 20% of the total glucose metabolized, 5.44 ± 0.38 mg/kg · min. Following insulin, glucose storage increased to 3.18 ± 0.34 mg/kg min and was responsible for 59% of the total glucose metabolized. These results indicate that the primary effect of insulin on muscle tissue is to enhance glucose storage, presumably as glycogen. When a higher degree of hyperinsulinemia (163 ± 19 μl/ml) was created while maintaining euglycemia, total glucose metabolism (7.99 ± 0.58) and glucose storage (5.30 ± 0.80) both increased (P < 0.01) compared with the lower dose insulin clamp study, but glucose oxidation (2.70 ± 0.16 mgμkg min)increased only slightly. These results suggest that the ability of higher doses of insulin to further stimulate glucose metabolism is primarily the result of increased glucose storage by peripheral tissues, most likely muscle.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3