Development of Environmentally Ecofriendly Composites Based on Polypropylene/Bahia Beige Waste: Effect of Reinforcement Content on Physical, Mechanical, Chemical, and Microstructural Properties

Author:

Silva dos Santos Rayara,Poubel Mendonça da Silveira Pedro Henrique,Cruz Bastos Beatriz,do Nascimento da Conceição Marceli,da Conceição Ribeiro Roberto Carlos,Cruz Bastos Daniele

Abstract

This article presents the development and characterization of environmentally friendly composites comprising polypropylene (PP) reinforced with Bahia Beige (BB) marble waste. The composites were prepared using different PP/BB weight ratios and analyzed for their chemical, physical, mechanical, microstructural, and thermal properties. X-ray fluorescence (XRF) analysis revealed the composition of BB, which exhibited a significant concentration of CaO, indicating the presence of calcite and other oxides. X-ray diffraction (XRD) analysis confirmed the presence of PP and identified calcite, dolomite, and quartz phases in the composites. Due to enhanced ceramic reinforcement, the composites displayed increased crystallinity with higher BB content. Fourier-transform infrared (FTIR) analysis demonstrated the interaction between PP and BB, with the bands corresponding to PP being replaced by bands related to BB as filler content increased. The density tests indicated a slight increase in composite density without deviating significantly from pure PP, which is advantageous for low-density applications. The hardness of the composites increased with filler content, while the impact resistance decreased notably. Scanning electron microscopy (SEM) images showed the good distribution of BB within the composites and the presence of ductile characteristics on the composite surface. The heat deflection temperature (HDT) results revealed that adding BB up to 40% by weight increased HDT, whereas a significant reduction occurred at a 50% BB content. These composites demonstrated favorable properties for engineering applications, offering a sustainable solution through utilizing natural waste resources and contributing to Brazilian sustainability efforts.

Publisher

LIDSEN Publishing Inc

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3