Reutilization of solid wastes to improve the hydromechanical and mechanical behaviors of soils — a state-of-the-art review

Author:

Liu Chih-Hsuan,Hung ChingORCID

Abstract

AbstractThe rapid urbanization, industrialization, and population growth have led to a considerable rise in solid waste production, highlighting the need for efficient solid waste management and recycling methods. To address the challenge of solid waste production, an alternative solution is to repurpose it in geotechnical engineering. This offers promising benefits as solid waste exhibits various mechanisms that can improve soil's hydromechanical and mechanical behaviors. This review aims to comprehensively analyze the effects and potential application of various solid waste types to stabilize and reinforce soil. The impacts and research trends of industrial waste, such as fly ash, red mud, ground granulated blast-furnace slag, and construction and demolition waste, as well as agricultural and municipal solid wastes, including rice husk ash, press mud, used waste tires, and face masks, on soil properties were identified. The findings contribute to a better understanding of the potential of solid waste as a sustainable and cost-effective solution for improving soil quality, highlighting new research themes in this area. A wide range of innovative methods to stabilize and reinforce soil have also been proposed; however, ingenious and effective containment techniques, as well as addressing the potential impacts of climate change on stabilized and reinforced soils (SRS), still need to be developed for robust field applications. This state-of-the-art review offers useful insights into the reutilization of solid wastes as a promising alternative for improving the hydromechanical and mechanical behaviors of SRS.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3