Impact of Different Mineral Reinforcements on HDPE Composites: Effects of Melt Flow Index and Particle Size on Physical and Mechanical Properties

Author:

da Silveira Pedro Henrique Poubel Mendonça1ORCID,da Conceição Marceli do Nascimento2ORCID,de Pina Davi Nascimento3,de Moraes Paes Pedro Afonso3,Monteiro Sergio Neves3ORCID,Tapanes Neyda de La Caridad Om3ORCID,da Conceição Ribeiro Roberto Carlos2ORCID,Bastos Daniele Cruz3ORCID

Affiliation:

1. Department of Materials Science, Military Institute of Engineering—IME, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, RJ, Brazil

2. Centre for Mineral Technology—CETEM, Rio de Janeiro 21941-908, RJ, Brazil

3. West Zone Campus, Rio de Janeiro State University—UERJ, Avenida Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro 23070-200, RJ, Brazil

Abstract

The use of mineral reinforcements in polymer matrix composites has emerged as an alternative for sustainable production, reducing waste and enhancing the physical and mechanical properties of these materials. This study investigated the impact of the melt flow index (MFI) of HDPE and the particle size of two mineral reinforcements, Bahia Beige (BB) and Rio Grande do Norte Limestone (CRN), on the composites. All composites were processed via extrusion, followed by injection, with the addition of 30 wt.% reinforcement. Chemical analyses revealed similar compositions with high CaO content for both minerals, while X-ray diffraction (XRD) identified predominantly calcite, dolomite, and quartz phases. Variations in the MFI, reinforcement type, and particle size showed a minimal influence on composite properties, supported by robust statistical analyses that found no significant differences between groups. Morphological analysis indicated that composites with lower MFI exhibited less porous structures, whereas larger particles of BB and CRN formed clusters, affecting impact resistance, which was attributed to poor interfacial adhesion.

Publisher

MDPI AG

Reference56 articles.

1. Factors affecting social attitude and behavior for the transition towards a circular economy;Voukkali;Sustain. Chem. Pharm.,2023

2. Assembly, G. (2024, July 11). Sustainable Development Goals. SDGs Transform Our World. Available online: http://www.igbp.net/download/18.62dc35801456272b46d51/1399290813740/NL82-SDGs.pdf.

3. Maximo, Y.I., Hassegawa, M., Verkerk, P.J., and Missio, A.L. (2022). Forest bioeconomy in Brazil: Potential innovative products from the forest sector. Land, 11.

4. Measuring progress of China’s circular economy;Wang;Resour. Conserv. Recycl.,2020

5. Microplastics in the coastal environment of Mediterranean and the impact on sustainability level;Chatziparaskeva;Sustain. Chem. Pharm.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3