Parallel Support Vector Machines Applied to the Prediction of Multiple Buildings Energy Consumption

Author:

Zhao Hai Xiang1,Magoulès Frédéric2

Affiliation:

1. Ecole Centrale Paris, Applied Mathematics and Systems Laboratory, Grande

2. Voie des Vignes, 92295 Châtenay-Malabry Cedex, France

Abstract

Analyzing the energy performance in a building is an important task in energy conservation. To accurately predict the energy consumption is difficult in practice since the building is a complex system with many parameters involved. To obtain enough historical data of energy uses and to find out an approach to analyze them become mandatory. In this paper, we propose a simulation method with the aim of obtaining energy data for multiple buildings. Support vector machines method with Gaussian kernel is applied to obtain the prediction model. For the first time, a parallel implementation of support vector machines is used to accelerate the model training process. Our experimental results show very good performance of this approach, paving the way for further applications of support vector machines method on large energy consumption datasets.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3