Short-Term Energy Consumption Prediction of Large Public Buildings Combined with Data Feature Engineering and Bilstm-Attention

Author:

Tian Zeqin1,Chen Dengfeng12,Zhao Liang1

Affiliation:

1. School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Accurate building energy consumption prediction is a crucial condition for the sustainable development of building energy management systems. However, the highly nonlinear nature of data and complex influencing factors in the energy consumption of large public buildings often pose challenges in improving prediction accuracy. In this study, we propose a combined prediction model that combines signal decomposition, feature screening, and deep learning. First, we employ the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) to decompose energy consumption data. Next, we propose the Maximum Mutual Information Coefficient (MIC)-Fast Correlation Based Filter (FCBF) combined feature screening method for feature selection on the decomposed components. Finally, the selected input features and corresponding components are fed into the Bi-directional Long Short-Term Memory Attention Mechanism (BiLSTMAM) model for prediction, and the aggregated results yield the energy consumption forecast. The proposed approach is validated using energy consumption data from a large public building in Shaanxi Province, China. Compared with the other five comparison methods, the RMSE reduction of the CEEMDAN-MIC-FCBF-BiLSTMAM model proposed in this study ranged from 57.23% to 82.49%. Experimental results demonstrate that the combination of CEEMDAN, MIC-FCBF, and BiLSTMAM modeling markedly improves the accuracy of energy consumption predictions in buildings, offering a potent method for optimizing energy management and promoting sustainability in large-scale facilities.

Funder

National Natural Science Foundation Program

Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering

Scientific Research Program of Shaanxi Provincial Education Department

Xi’an Science, Technology Project

Shaanxi Provincial Natural Science Foundation General Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3