Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network

Author:

You Yuwen1ORCID,Wang Zhonghua1,Liu Zhihao1,Guo Chunmei1,Yang Bin1ORCID

Affiliation:

1. School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300384, China

Abstract

Cogeneration is an important means for heat supply enterprises to obtain heat, and accurate load prediction is particularly crucial. The heat load of a centralized heat supply system is influenced by various factors such as outdoor meteorological parameters, the building envelope structure, and regulation control, which exhibit a strong coupling and nonlinearity. It is essential to identify the key variables affecting the heat load at different heating stages through data mining techniques and to use deep learning algorithms to precisely regulate the heating system based on load predictions. In this study, a heat station in a northern Chinese city is taken as the subject of research. We apply the Fuzzy Clustering based on Fourier distance (FCBD-FCM) algorithm to transform the factors influencing the long and short-term load prediction of heat supply from the time domain to the frequency domain. This transformation is used to analyze the degree of their impact on load changes and to extract factors with significant influence as the multifeatured input variables for the prediction model. Five neural network models for load prediction are established, namely, Backpropagation (BP), convolutional neural network (CNN), Long Short-Term Memory (LSTM), CNN-LSTM, and CNN-BiLSTM. These models are compared and analyzed for their performance in long-term, short-term, and ultrashort-term heating load prediction. The findings indicate that the load prediction accuracy is high when multifeatured input variables are based on fuzzy clustering. Furthermore, the CNN-BiLSTM model notably enhances the prediction accuracy and generalization ability compared to other models, with the Mean Absolute Percentage Error (MAPE) averaging within 3%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3