A New Method of Nonlinear Feature Extraction for Multi-Fault Diagnosis of Rotor Systems

Author:

Li Zhixiong1,Yan Xinping1,Yuan Chengqing1,Zhao Jiangbin1,Peng Zhongxiao2

Affiliation:

1. {Key Lab. of Marine Power Engineering and Technology (Ministry of Transportation); Reliability Engineering Institute, School of Energy and Power Engineering}, Wuhan University of Technology, Wuhan 430063, P. R. China.

2. School of Engineering and Physical Sciences, James Cook University, QLD 4811, Australia.

Abstract

Rotor systems have been extensively used in a variety of industrial applications. However an unexpected failure may cause a break down of the rotational machinery, resulting in production and significant economic losses. Efficient incipient fault diagnosis is therefore critical to the machinery normal operation. Noise and vibration analysis is popular and effective for the rotor fault diagnosis. One of the key procedures in the fault diagnosis is feature extraction and selection. Literature review indicates that only limited research considered the nonlinear property of the feature space by the use of manifold learning algorithms in the field of mechanical fault diagnosis, and nonlinear feature extraction for rotor multi-fault detection has not been studied. This paper reports a new development based on a novel supervised manifold learning algorithm (adaptive locally linear embedding) applied to nonlinear feature extraction for rotor multiple defects identification. The adaptive locally linear embedding (ALLE) combines with the adaptive nearest neighbour algorithm and supervised locally linear embedding (LLE) to provide an adaptive supervised learning. Hence, distinct nonlinear features could be extracted from high-dimensional dataset effectively. Based on ALLE, a new fault diagnosis approach has been proposed. The independent component analysis (ICA) was firstly employed to separate the faulty components of the rotor vibration from the observation data. Then wavelet transform (WT) was used to decompose the recovered signals, and statistical features of frequency bands were hence calculated. Lastly, ALLE was applied to learn the low-dimensional intrinsic structure of the original feature space. The experiments on vibration data of single and coupled rotor faults have demonstrated that sensitive fault features can be extracted efficiently after the ICA-WT-ALLE processing, and the proposed diagnostic system is effective for the multi-fault identification of the rotor system. Furthermore, the proposed method achieves higher performance in terms of the classification rate than other feature extraction methods such as principal component analysis (PCA) and locally linear embedding (LLE).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3