Kernel Local Linear Discriminate Method for Dimensionality Reduction and Its Application in Machinery Fault Diagnosis

Author:

Shi Kunju1,Liu Shulin1,Zhang Hongli1,Wang Bo12

Affiliation:

1. School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China

2. School of Mechanical and Electronic Engineering, Chuzhou University, Chuzhou 239000, China

Abstract

Dimensionality reduction is a crucial task in machinery fault diagnosis. Recently, as a popular dimensional reduction technology, manifold learning has been successfully used in many fields. However, most of these technologies are not suitable for the task, because they are unsupervised in nature and fail to discover the discriminate structure in the data. To overcome these weaknesses, kernel local linear discriminate (KLLD) algorithm is proposed. KLLD algorithm is a novel algorithm which combines the advantage of neighborhood preserving projections (NPP), Floyd, maximum margin criterion (MMC), and kernel trick. KLLD has four advantages. First of all, KLLD is a supervised dimension reduction method that can overcome the out-of-sample problems. Secondly, short-circuit problem can be avoided. Thirdly, KLLD algorithm can use between-class scatter matrix and inner-class scatter matrix more efficiently. Lastly, kernel trick is included in KLLD algorithm to find more precise solution. The main feature of the proposed method is that it attempts to both preserve the intrinsic neighborhood geometry of the increased data and exact the discriminate information. Experiments have been performed to evaluate the new method. The results show that KLLD has more benefits than traditional methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A method for predicting the development of stroke in men working under the influence of local vibration;Russian Journal of Occupational Health and Industrial Ecology;2022-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3