Rolling Element Bearing Fault Recognition Approach Based on Fuzzy Clustering Bispectrum Estimation

Author:

Liu W.Y.1,Han J.G.1

Affiliation:

1. School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, China

Abstract

A rolling element bearing fault recognition approach is proposed in this paper. This method combines the basic Higher-order spectrum (HOS) theory and fuzzy clustering method in data mining area. In the first step, all the bispectrum estimation results of the training samples and test samples are turned into binary feature images. Secondly, the binary feature images of the training samples are used to construct object templates including kernel images and domain images. Every fault category has one object templates. At last, by calculating the distances between test samples' binary feature images and the different object templates, the object classification and pattern recognition can be effectively accomplished. Bearing is the most important and much easier to be damaged component in rotating machinery. Furthermore, there exist large amounts of noise jamming and nonlinear coupling components in bearing vibration signals. The Higher Order Cumulants (HOC), which can quantitatively describe the nonlinear characteristic signals with close relationship between the mechanical faults, is introduced in this paper to de-noise the raw bearing vibration signals and obtain the bispectrum estimation pictures. In the experimental part, the rolling bearing fault diagnosis experiment results proved that the classification was completely correct.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3