Bearing Fault Classification Based on Conditional Random Field

Author:

Wang Guofeng1,Feng Xiaoliang1,Liu Chang1

Affiliation:

1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China

Abstract

Condition monitoring of rolling element bearing is paramount for predicting the lifetime and performing effective maintenance of the mechanical equipment. To overcome the drawbacks of the hidden Markov model (HMM) and improve the diagnosis accuracy, conditional random field (CRF) model based classifier is proposed. In this model, the feature vectors sequences and the fault categories are linked by an undirected graphical model in which their relationship is represented by a global conditional probability distribution. In comparison with the HMM, the main advantage of the CRF model is that it can depict the temporal dynamic information between the observation sequences and state sequences without assuming the independence of the input feature vectors. Therefore, the interrelationship between the adjacent observation vectors can also be depicted and integrated into the model, which makes the classifier more robust and accurate than the HMM. To evaluate the effectiveness of the proposed method, four kinds of bearing vibration signals which correspond to normal, inner race pit, outer race pit and roller pit respectively are collected from the test rig. And the CRF and HMM models are built respectively to perform fault classification by taking the sub band energy features of wavelet packet decomposition (WPD) as the observation sequences. Moreover, K-fold cross validation method is adopted to improve the evaluation accuracy of the classifier. The analysis and comparison under different fold times show that the accuracy rate of classification using the CRF model is higher than the HMM. This method brings some new lights on the accurate classification of the bearing faults.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3