Health Checks through Landmark Bridges to Sky-High Structures

Author:

Ni Y. Q.1,Wong K. Y.2,Xia Y.1

Affiliation:

1. Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

2. Bridges and Structures Division, Highways Department, The Government of the Hong Kong Special Administrative Region, Hong Kong, China

Abstract

Massive infrastructure projects developed in Hong Kong make for big challenges and unique opportunities for engineers and researchers. The construction of the cables-stayed Stonecutters Bridge sets up a new landmark in the bridge engineering community, with its main span exceeding 1,000 m as well as its sophisticated instrumentation system comprising more than 1,500 sensors. The development of structural health monitoring (SHM) technology has evolved for over 10 years in Hong Kong since the implementation of the so-called “Wind And Structural Health Monitoring System (WASHMS)” on the suspension Tsing Ma Bridge in 1997. The successful engineering paradigms of implementing and operating SHM systems for five cable-supported bridges and experiences gained by practice and research in the past decade have promoted the applications of this technology beyond Hong Kong and extending from long-span bridges to high-rise structures. In this paper, the evolution in the design methodology for SHM systems, the advancement in several aspects of SHM technology, and a performance comparison between the early implemented and lately developed SHM systems for large-scale bridges are first outlined. Subsequently, the concept of the so-called “life-cycle structural health monitoring (LSHM)” is addressed by exploring the integration of in-construction monitoring and in-service monitoring and by realizing such an integrated system to a super-tall tower structure. The issue on how an SHM system benefits structural vibration control is also discussed.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3