Effects of Environmental and Operational Conditions on Structural Health Monitoring and Non-Destructive Testing: A Systematic Review

Author:

Keshmiry Ayoub1,Hassani Sahar2,Mousavi Mohsen3ORCID,Dackermann Ulrike2ORCID

Affiliation:

1. Faculty of Civil Engineering, Shahrood University of Technology, Shahrood P.O. Box 3619995161, Iran

2. Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia

3. Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia

Abstract

The development of Structural Health Monitoring (SHM) and Non-Destructive Testing (NDT) techniques has rapidly evolved and matured over the past few decades. Advances in sensor technology have facilitated deploying SHM systems for large-scale structures and local NDT of structural members. Although both methods have been successfully applied to identify structural damage in various systems, Environmental and Operational Condition (EOC) variations can influence sensor measurements and mask damage signatures in the structural response. EOCs include environmental conditions, such as temperature, humidity, and wind, as well as operational conditions, such as mass loading, vibration, and boundary conditions. The effect of EOCs can significantly undermine the reliability and robustness of damage assessment technologies and limit their performance. Thus, successful SHM and NDT systems can compensate for changing EOCs. This paper provides a state-of-the-art review of the effects of EOCs on SHM and NDT systems. It presents recent developments in advanced sensing technology, signal processing, and analysis techniques that aim to eliminate the masking effect of EOC variations and increase the damage sensitivity and performance of SHM and NDT systems. The paper concludes with current research challenges, trends, and recommendations for future research directions.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3