Wavelet Transform for Structural Health Monitoring: A Compendium of Uses and Features

Author:

Taha M. M. Reda1,Noureldin A.2,Lucero J. L.3,Baca T. J.4

Affiliation:

1. Department of Civil Engineering, University of New Mexico Albuquerque, NM 87131, USA,

2. Department of Electrical and Computer Engineering, Royal Military College of Canada, Kingston, ON, Canada

3. Los Alamos National Laboratory, Los Alamos, NM 87545, USA

4. Department of Structural Dynamics, Sandia National Laboratories Albuquerque, NM, USA

Abstract

The strategic and monetary value of the civil infrastructure worldwide necessitates the development of structural health monitoring (SHM) systems that can accurately monitor structural response due to real-time loading conditions, detect damage in the structure, and report the location and nature of this damage. In the last decade, extensive research has been carried out for developing vibration-based damage detection algorithms that can relate structural dynamics changes to damage occurrence in a structure. In the mean time, the wavelet transform (WT), a signal processing technique based on a windowing approach of dilated ‘scaled’ and shifted wavelets, is being applied to a broad range of engineering applications. Wavelet transform has proven its ability to overcome many of the limitations of the widely used Fourier transform (FT); hence, it has gained popularity as an efficient means of signal processing in SHM systems. This increasing interest in WT for SHM in diverse applications motivates the authors to write an exposition on the current WT technologies. This article presents a utilitarian view of WT and its technologies. By reviewing the state-of-the-art in WT for SHM, the article discusses specific needs of SHM addressed by WT, classifies WT for damage detection into various fields, and describes features unique to WT that lends itself to SHM. The ultimate intent of this article is to provide the readers with a background on the various aspects of WT that might appeal to their need and sector of interest in SHM. Additionally, the comprehensive literature review that comprises this study will provide the interested reader a focused search to investigate using wavelets in SHM.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 252 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3