Effectiveness of Wavelet Denoising on Secondary Ion Mass Spectrometry Signals

Author:

Dahraoui NadiaORCID,Boulakroune M'hamedORCID,Khelfaoui S.,Kherroubi S.,Benkrima YaminaORCID

Abstract

Wavelet theory has already achieved huge success. For Secondary Ions Mass Spectrometry (SIMS) signals, denoising the secondary signal, which is altered by the measurement, is considered that an essential step prior to applying such a signal processing technique that aims enhance the SIMS signals.The most efficient and widely used wavelet denoising method is based on wavelet coefficient thresholding. This process involves three important steps; wavelet decomposition: the input signals are decomposed into wavelet coefficients, thresholding: the wavelet coefficients are modified according to a threshold, and reconstruction: the modified coefficients are used in an inverse transform to obtain the noise-free-signal. Several researchers have used thresholding wavelet denoising techniques. The choice of wavelet type and the level of resolution can have a significant influence; it is important to note that the choice of resolution level depends on the type of signal we are dealing with, the nature of the present noise, and our specific goals for the denoised signal. It is generally recommended to test different resolution levels and evaluate their impact on the quality of the denoised signal before making a final decision. Moreover, the results obtained in wavelet denoising can be significantly influenced by the selection of wavelet types. The chosen wavelet type plays a crucial role in the extraction of signal details. Indeed, the effectiveness of denoising the MD6 sample has been demonstrated by the results obtained with sym4, db8, Haar and coif5 wavelets? These wavelets have effectively reduced noise while preserving crucial signal information, leading to an enhancement in the quality of the denoised signal.

Publisher

V. N. Karazin Kharkiv National University

Subject

General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3