A Secure Cellular Automata Integrated Deep Learning Mechanism for Health Informatics

Author:

Pokkuluri Kiran Sree,Nedunuri SSSN Usha Devi

Abstract

Health informatics has gained a greater focus as the data analytics role has become vital for the last two decades. Many machine learning-based models have evolved to process the huge data involved in this sector. Deep Learning (DL) augmented with Non-Linear Cellular Automata (NLCA) is becoming a powerful tool with great potential to process big data. This will help to develop a system that facilitates parallelization, rapid data storage, and computational power with improved security parameters. This paper provides a novel and robust mechanism with deep learning augmented with non-linear cellular automata with greater security, adaptability for health informatics. The proposed mechanism is adaptable and can address many open problems in medical informatics, bioinformatics, and medical imaging. The security parameters considered in this model are Confidentiality, authorization, and integrity. This method is evaluated for performance, and it reports an average accuracy of 89.32%. The parameters precision, sensitivity, and specificity are considered to measure to measure the accuracy of the model.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning for Identification of Behavioral Changes;Advances in Finance, Accounting, and Economics;2024-10-25

2. Enhancing Aquaculture Efficiency;Advances in Environmental Engineering and Green Technologies;2024-04-26

3. Integration of Machine Learning Augmented With Biosensors for Enhanced Water Quality Monitoring;Advances in Environmental Engineering and Green Technologies;2024-04-26

4. A Unified Framework for Recommend Medicine Review Categories Through Bi-LSTM and Supervised Learning;2024 International Conference on Expert Clouds and Applications (ICOECA);2024-04-18

5. Designing LSTM Networks for Emotion Modelling;Advances in Psychology, Mental Health, and Behavioral Studies;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3