Designing LSTM Networks for Emotion Modelling

Author:

Pokkuluri Kiran Sree1ORCID,Devi N. S. S. S. N. Usha2ORCID,Khang Alex3

Affiliation:

1. Shri Vishnu Engineering College for Women, India

2. UCEK-JNTUK, India

3. GRITEx SCEDEX, AIoCF, USA

Abstract

This chapter presents a simple and effective approach to designing LSTM networks for the task of emotion recognition. Emotion modelling plays a crucial role in various applications, such as human-computer interaction, sentiment analysis, and affective computing. The proposed LSTM architecture incorporates sequential information inherent in emotional expressions, allowing the model to capture temporal dependencies and nuances in emotional states. The input data, typically in the form of time-series sequences, is pre-processed to extract relevant features and fed into the LSTM network. The model is trained on labelled emotion datasets, enabling it to learn patterns and relationships between input features and corresponding emotional states. To enhance the network's performance, hyper parameter tuning, and regularization techniques are employed. The model's effectiveness is evaluated on benchmark emotion datasets, demonstrating its capability to accurately predict and classify various emotional states.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3