Construction and Analysis of Emotion Computing Model Based on LSTM

Author:

Jiang Huiping1ORCID,Jiao Rui1ORCID,Wang Zequn1ORCID,Zhang Ting1ORCID,Wu Licheng1ORCID

Affiliation:

1. Brain Cognitive Computing Lab, School of Information and Engineering, Minzu University of China, Beijing 100081, China

Abstract

The electroencephalogram (EEG) is the most common method used to study emotions and capture electrical brain activity changes. Long short-term memory (LSTM) processes the temporal characteristics of data and is mostly used for emotional text and speech recognition. Since an EEG involves a time series signal, this article mainly studied the introduction of LSTM for emotional EEG recognition. First, an ALL-LSTM model with a four-layered LSTM network was established in which the average accuracy rate for emotional classification reached 86.48%. Second, four EEG characteristics were extracted via the wavelet transform (WT) using the LSTM-based sentiment classification network. The experimental results showed that the best average classification accuracy of these four features was 73.48%. This was 13% lower than in the ALL-LSTM model, indicating that inappropriate feature extraction methods could destroy the timing of EEG signals. LSTM can be used to thoroughly examine EEG signal timing and preprocessed EEG data. The accuracy and stability of the ALL-LSTM model are significantly superior to those of the WT-LSTM model. The result showed that the process of emotion generation based on EEG is sequential. Compared with EEG emotion extraction using WT, the raw EEG signal’s timing is more suitable for the LSTM network.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3