Effect of contact blast loading on the plastic deformation forming ability of large steel pipes

Author:

Vu Quang DucORCID

Abstract

Plastic deformation forming with metal pipe blanks by contact blast loading inside pipes is an interesting moldless forming technique, also a complex and error-prone process. Some advantages are very characteristic of this forming technique such as no cost of mold, tooling and low energy consumption, no complicated control equipment compared to other forming techniques such as casting, rolling, tube hydrostatic forming, bending – welding. Up to now, the calculation and design of this forming technique mainly use some existing reference empirical formulas, so the experimental results are only suitable in the range of small pipe diameters, and still there are significant deviations for larger pipe diameters. In order to increase the predictability and accuracy of forming process by contact blast loading inside large pipes, this paper presents a study on the influence of the mass of highly explosive material – TNT to the forming ability of large steel pipes from API-5LX-42 mild steel materials by modern 3D numerical simulation – using Abaqus/Cae software. Four output criteria with maximum values are used to evaluate the efficiency of this forming process, including maximum diameter of the blast zone (Dmax£2D0), Von Mises stress (Smax£UTS), Hoop plastic strain component (PE22max£1), and Pipe wall thinning rate (eT-max£60 %). The results of this research on the plastic deformation forming process using numerical simulation can be used for the next experimental step to evaluate the difference between simulation and experiment, as well as use this data in the calculation and design of pipe products with circular or square cross-sections to save both time and money of trial and error before application in actual manufacturing

Publisher

OU Scientific Route

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3