Author:
Wu Tingyao,Yu Hongan,Jiang Nan,Zhou Chuanbo,Luo Xuedong
Abstract
AbstractGround blast loads are of great importance to the safe operation of steel and gas pipelines, and the results obtained from traditional theoretical formulas for pipeline safety prediction are in error with the actual measured data. In this paper, full-size field tests and corresponding numerical simulations are carried out using Timoshenko beam theory and explosion stress wave theory, which consider shear effects. At the same time, combined with the theory of foundation stiffness and pipeline stiffness flexibility ratio, a modified theoretical model is obtained in line with the actual conditions of the site, which can accurately calculate the deformation and displacement of pipeline underground explosion load, and greatly reduce the error of theoretical prediction results. The innovation of the research results in this paper is that the theoretical stress in the Timoshenko beam can be replaced by the circumferential strain. On the other hand, the modified theoretical solution can obtain the critical weight of explosives to prevent pipeline damage at different buried depths. It provides a theoretical basis for the protection of pipelines’ underground blast loads and provides research ideas for the safe protection and design of pipelines.
Funder
National Natural Science Foundation of China
Hubei Key Laboratory of Blasting Engineering Foundation
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献