Effect of Different Bend Pipes on the Propagation Characteristics of Premixed Methane-Air Explosion in Confined Spaces

Author:

Qiu Jinwei1ORCID,Jiang Bingyou12ORCID,Tang Mingyun1,Zhou Liang1,Ren Bo3

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, China

2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

3. State Key Laboratory of Deep Coal Mining & Environment Protection, Coal Mining National Engineering Technology Research Institute, Huainan 232000, China

Abstract

To explore the effect of different bend pipes on the propagation characteristics of premixed methane-air explosion, the experimental explosion pipe system and numerical model were established. By adopting the comparative analysis of experiments and numerical modeling, it conducted researches on the overpressure evolution of gas explosion shock wave in pipes with different bends and obtained the expressions of attenuation coefficient of shock wave overpressure. The results showed that the change of pipe direction accelerated the attenuation of gas explosion shock wave. The propagation attenuation of gas explosion in the bend pipe was mainly affected by the bending angle and initial peak overpressure before bending. With the increase of the bending angle, the attenuation coefficient of gas explosion shock wave gradually increased. For the same bending angle, the attenuation coefficient of gas explosion shock wave increased with the increase of gas volume. The obtained coupling relationships between attenuation coefficient, bending angle, and initial peak overpressure before bending were useful for estimating the overpressure value after the bend. The results presented in this paper have important significance for the assessment of structures that have been damaged in the mine laneway of gas exploration accidents, further enriching the gas exploration spread theory.

Funder

Natural Science Foundation of the Anhui Higher Education Institutions of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3