Caldesmon Inhibits Nonmuscle Cell Contractility and Interferes with the Formation of Focal Adhesions

Author:

Helfman David M.1,Levy Esther T.2,Berthier Christine1,Shtutman Michael2,Riveline Daniel2,Grosheva Inna2,Lachish-Zalait Aurelie3,Elbaum Michael3,Bershadsky Alexander D.2

Affiliation:

1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724; and Departments of

2. Molecular Cell Biology and

3. Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

Caldesmon is known to inhibit the ATPase activity of actomyosin in a Ca2+–calmodulin-regulated manner. Although a nonmuscle isoform of caldesmon is widely expressed, its functional role has not yet been elucidated. We studied the effects of nonmuscle caldesmon on cellular contractility, actin cytoskeletal organization, and the formation of focal adhesions in fibroblasts. Transient transfection of nonmuscle caldesmon prevents myosin II-dependent cell contractility and induces a decrease in the number and size of tyrosine-phosphorylated focal adhesions. Expression of caldesmon interferes with Rho A-V14-mediated formation of focal adhesions and stress fibers as well as with formation of focal adhesions induced by microtubule disruption. This inhibitory effect depends on the actin- and myosin-binding regions of caldesmon, because a truncated variant lacking both of these regions is inactive. The effects of caldesmon are blocked by the ionophore A23187, thapsigargin, and membrane depolarization, presumably because of the ability of Ca2+–calmodulin or Ca2+–S100 proteins to antagonize the inhibitory function of caldesmon on actomyosin contraction. These results indicate a role for nonmuscle caldesmon in the physiological regulation of actomyosin contractility and adhesion-dependent signaling and further demonstrate the involvement of contractility in focal adhesion formation.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3