Affiliation:
1. *Department of Molecular Cell Biology, University of Groningen, 9751 NN Haren, The Netherlands; and
2. School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
Abstract
Generation of a phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] gradient within the plasma membrane is important for cell polarization and chemotaxis in many eukaryotic cells. The gradient is produced by the combined activity of phosphatidylinositol 3-kinase (PI3K) to increase PI(3,4,5)P3on the membrane nearest the polarizing signal and PI(3,4,5)P3dephosphorylation by phosphatase and tensin homolog deleted on chromosome ten (PTEN) elsewhere. Common to both of these enzymes is the lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], which is not only the substrate of PI3K and product of PTEN but also important for membrane binding of PTEN. Consequently, regulation of phospholipase C (PLC) activity, which hydrolyzes PI(4,5)P2, could have important consequences for PI(3,4,5)P3localization. We investigate the role of PLC in PI(3,4,5)P3-mediated chemotaxis in Dictyostelium. plc-null cells are resistant to the PI3K inhibitor LY294002 and produce little PI(3,4,5)P3after cAMP stimulation, as monitored by the PI(3,4,5)P3-specific pleckstrin homology (PH)-domain of CRAC (PHCRACGFP). In contrast, PLC overexpression elevates PI(3,4,5)P3and impairs chemotaxis in a similar way to loss of pten. PI3K localization at the leading edge of plc-null cells is unaltered, but dissociation of PTEN from the membrane is strongly reduced in both gradient and uniform stimulation with cAMP. These results indicate that local activation of PLC can control PTEN localization and suggest a novel mechanism to regulate the internal PI(3,4,5)P3gradient.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献