Enhanced chemotaxis through spatially-regulated absolute concentration robustness

Author:

Biswas DebojyotiORCID,Bhattacharya SayakORCID,Iglesias Pablo A.ORCID

Abstract

AbstractChemotaxis, the directional motility of cells in response to spatial gradients of chemical cues, is a fundamental process behind a wide range of biological events, including the innate immune response and cancer metastasis. Recent advances in cell biology have shown that the protrusions that enable amoeboid cells to move are driven by the stochastic threshold crossings of an underlying excitable system. As a cell encounters a chemoattractant gradient, the size of this threshold is regulated spatially so that the crossings are biased towards the front of the cell. For efficient directional migration, cells must limit undesirable lateral and rear-directed protrusions. The inclusion of a control mechanism to suppress these unwanted firings would enhance chemotactic efficiency. It is known that absolute concentration robustness (ACR) exerts tight control over the mean and variance of species concentration. Here, we demonstrate how the coupling of the ACR mechanism to the cellular signaling machinery reduces the likelihood of threshold crossings in the excitable system. Moreover, we show that using the cell’s innate gradient sensing apparatus to direct the action of ACR to the rear, suppresses the lateral movement of the cells and that this results in improved chemotactic performance.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3