Abstract
AbstractChemotaxis, the directional motility of cells in response to spatial gradients of chemical cues, is a fundamental process behind a wide range of biological events, including the innate immune response and cancer metastasis. Recent advances in cell biology have shown that the protrusions that enable amoeboid cells to move are driven by the stochastic threshold crossings of an underlying excitable system. As a cell encounters a chemoattractant gradient, the size of this threshold is regulated spatially so that the crossings are biased towards the front of the cell. For efficient directional migration, cells must limit undesirable lateral and rear-directed protrusions. The inclusion of a control mechanism to suppress these unwanted firings would enhance chemotactic efficiency. It is known that absolute concentration robustness (ACR) exerts tight control over the mean and variance of species concentration. Here, we demonstrate how the coupling of the ACR mechanism to the cellular signaling machinery reduces the likelihood of threshold crossings in the excitable system. Moreover, we show that using the cell’s innate gradient sensing apparatus to direct the action of ACR to the rear, suppresses the lateral movement of the cells and that this results in improved chemotactic performance.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献