Phospholipase C in Dictyostelium discoideum. Cyclic AMP surface receptor and G-protein-regulated activity in vitro

Author:

Bominaar A A1,Kesbeke F2,Van Haastert P J M1

Affiliation:

1. Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

2. Cell Biology and Genetics, State University of Leiden, Zoological Laboratory, Kaiserstraat 63, 2311 GP Leiden, The Netherlands

Abstract

The cellular slime mould Dictyostelium discoideum shows several responses after stimulation with the chemoattractant cAMP, including a transient rise in cyclic AMP (cAMP), cGMP and Ins(1,4,5)P3. In this paper the regulation of phospholipase C in vitro is described. Under our experimental conditions commercial PtdIns(4,5)P2 cannot be used to analyse phospholipase C activity in Dictyostelium lysates, because it is hydrolysed mainly to glycerophosphoinositol instead of Ins(1,4,5)P3. Enzyme activity was determined with endogenous unlabelled PtdInsP2 as a substrate. The product was measured by isotope-dilution assay and identified as authentic Ins(1,4,5)P3. Since phospholipase C is strictly Ca(2+)-dependent, with an optimal concentration range of 1-100 microM, cell lysates were prepared in EGTA and the enzyme reaction was started by adding 10 microM free Ca2+. Phospholipase C activity increased 2-fold during Dictyostelium development up to 8 h of starvation, after which the activity declined to less than 10% of the vegetative level. Enzyme activity in vitro increased up to 2-fold after stimulation of cells with the agonist cAMP in vivo. Addition of 10 microM guanosine 5′-[gamma-thio]triphosphate during lysis activated the enzyme to the same extent, and this effect was antagonized by guanosine 5′-[beta-thio]diphosphate. These results strongly suggest that surface cAMP receptors and G-proteins regulate phospholipase C during Dictyostelium development.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3