Forecasting Financial Products Acquisition via Dynamic Segmentation: An Application to the Italian Market

Author:

Bassi Francesca1

Affiliation:

1. University of Padova

Abstract

The topic of market segmentation is still one of the most pervasive in marketing. Among clustering techniques, finite mixture models have gained recognition as a method of segmentation with several advantages over traditional methods; one variant of finite mixture models – the latent class (LC) model – is probably the most popular. The LC approach is innovative and flexible, and can provide suitable solutions to several problems regarding the definition and development of marketing strategies, because it takes into account specific features of the collected data, such as their scale of measure (often ordinal or categorical, rather than continuous), their hierarchical structure and their longitudinal component. Dynamic segmentation is of key importance in many markets where it is unrealistic to assume stationary segments due to the dynamics in consumers' needs and product choices. In this paper, a mixture latent class Markov model is proposed to dynamically segment Italian households with reference to financial products ownership. The mixture approach is compared with the standard one in terms of its ability to forecast customers' behaviour in the reference market.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research of approaches to segmentation of wealthy consumers in banking market;Маркетинг и маркетинговые исследования;2022

2. Deep learning based bi-level approach for proactive loan prospecting;Expert Systems with Applications;2021-12

3. Study of segmentation for the users of personal care products;Independent Journal of Management & Production;2021-08-01

4. Market Segmentation in the Banking Industry Based on Customers' Expected Benefits: A Study of Shahr Bank;IRAN J MANAG STUD;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3