Author:
Ananthanarayanan T.S.,Mayo W.E.,Rosemeier R.G.
Abstract
AbstractThis study presents a unique and novel enhancement of the double crystal diffractometer which allows topographic mapping of X-ray diffraction rocking curve half widths at about 100-150μm spatial resolution. This technique can be very effectively utilized to map micro-lattice strain fields in crystalline materials. The current focus will be on the application of a recently developed digital implementation for the rapid characterization of defect structure and distribution in various semiconductor materials.Digital Automated Rocking Curve (DARC) topography has been successfully applied for characterizing defect structure in materials such as: GaAs, Si, AlGaAs, HgMnTe, HgCdTe, CdTe, Al, Inconnel, Steels, BaF2 PbS, PbSe, etc. The non-intrusive (non- contact & non-destructive) nature of the DARC technique allows its use in studing several phenomena such as corrosion fatigue, recrystallization, grain growth, etc., in situ. DARC topography has been used for isolating regions of non-uniform dislocation density on various materials. It is envisioned that this highly sophisticated, yet simple to operate, system will improve semiconductor-device yield significantly.The high strain sensitivity of the technique results from combination of the highly monochromated and collimated X-ray probe beani, the State of the art linear position-sensitive detector (LPSD) and the high-precision specimen goniometer.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献