The Expression of MDM2 Gene Promoted Chondrocyte Proliferation in Rats with Osteoarthritis via the Wnt/β-Catenin Pathway

Author:

Jiang Jiahao,Feng Shuaihua,Li Zexiang,Luo Yangqian,Wang Zhenyuan,Li Mingyang,Wu Guanbao

Abstract

This study aimed to investigate the regulatory mechanism of MDM2 gene expression on cartilage cell proliferation in Osteoarthritis (OA) rats. For this purpose, 22 SD rats were randomly divided into normal control (10 cases) and treated (12 cases) groups. Treated group was used for OA modelling with the modified Hulth method. After a week, RT-PCR was used to detect MDM2 in cartilage tissue of rats, Wnt 1, Wnt 3 a, Wnt 10 b and β-catenin genes mRNA expression. Rat chondrocytes were isolated and cultured, and the recombinant eukaryotic expression vector pcDNA3.1 myc-siRNA-MDM2-β-catenin and co-expression plasmid pcDNA3.1 myc-siRNA-MDM2-β-catenin was used to transfect chondrocytes and the proliferation and related gene expression levels of the transfected chondrocytes were detected by MTT method and RT-PCR. The results showed that compared with the control group, MDM2, Wnt 1, Wnt 3 a, Wnt 10b and β-catenin genes in OA rat cartilage constructed by Hulth method were increased (p<0.05). The pcDNA3.1 myc-beta-catenin transfection slowed down the proliferation of OA chondrocytes, different from the non-transfected OA group (p<0.001), and increased Wnt 1, Wnt 3a, Wnt 10b and β-catenin genes expression compared with the Control group (p<0.05), but did not affect the expression of MDM2. The transfection of siRNA-MDM2 was opposite to pcDNA3.1 myc-β-catenin. The co-expression plasmid pcDNA3.1 myc-siRNA-MDM2-beta-catenin transfection did not affect the proliferation of OA chondrocytes. In general, the high expression of MDM2 in OA rats restricts the proliferation of chondrocytes, which may be related to the main pathogenesis of the occurrence and development of OA in vivo, and the regulation of MDM2 on the proliferation of chondrocytes may be achieved through the Wnt/ β-catenin pathway.

Publisher

CMB Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3