Affiliation:
1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 201306, China
2. Department of Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
Abstract
The effects of the regulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) by microribonucleic acid- (miR-) 455-3p on bone marrow stem cells’ (BMSCs’) chondrogenic development were examined based on the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signal pathway. The alterations in miR-455-3p and PTEN were identified using osteoarthritis (OA) and healthy chondrocytes. Rats raised on the SD diet had their BMSCs isolated for chondrocyte-induced differentiation (blank group), transfected miR-455-3p mimic (mimic group), and inhibitor (inhibitor group). Besides, cell proliferation, alizarin red mineralization staining, and the activity of alkaline phosphatase (ALP) were detected. Real-time fluorescent quantitation polymerase chain reaction (PCR) and Western blot were utilized to detect Runx2, OPN, OSX, COL2A1 mRNA, and the difference between PI3K and AKT. Dual-luciferase reporter (DLR) genes were selected to analyze the target relationship of miR-455-3p to PTEN. It was demonstrated that miR-455-3p in OA was downregulated, while PTEN was upregulated (
) in comparison to healthy chondrocytes (
). Versus those in the blank group, alizarin red mineralization staining and the activity of ALP increased; RUNX, OPN, OSX, COL2A1 mRNA, p-PI3K, and p-AKT were elevated in the mimic group (
). Versus those in the blank and mimic groups, alizarin red mineralization staining and the activity of ALP reduced; RUNX, OPN, OSX, COL2A1 mRNA, p-PI3K, and p-AKT were downregulated in the inhibitor group (
). miR-455-3p could target PTEN to inhibit its expression, thus activating the PI3K/AKT signal pathway and promoting BMSCs chondrocyte-induced differentiation. The research results provided reference for the occurrence of OA and the study on therapeutic target.
Funder
Science and Technology Commission of Shanghai Municipality
Subject
Cell Biology,Molecular Biology