Isolation and Characterization of a Secretory Component of Echinococcus multilocularis Metacestodes Potentially Involved in Modulating the Host-Parasite Interface

Author:

Walker Mirjam1,Baz Adriana2,Dematteis Sylvia2,Stettler Marianne1,Gottstein Bruno1,Schaller Johann3,Hemphill Andrew1

Affiliation:

1. Institute of Parasitology

2. Immunology Department, School of Chemistry, School of Sciences, Montevideo, Uruguay

3. Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland

Abstract

ABSTRACT Echinococcus multilocularis metacestodes are fluid-filled, vesicle-like organisms, which are characterized by continuous asexual proliferation via external budding of daughter vesicles, predominantly in the livers of infected individuals. Tumor-like growth eventually leads to the disease alveolar echinococcosis (AE). We employed the monoclonal antibody (MAb) E492/G1, previously shown to be directed against a carbohydrate-rich, immunomodulatory fraction of Echinococcus granulosus , to characterize potentially related components in E. multilocularis . Immunofluorescence studies demonstrated that MAb E492/G1-reactive epitopes were found predominantly on the laminated layer and in the periphery of developing brood capsules. The respective molecules were continuously released into the exterior medium and were also found in the parasite vesicle fluid. The MAb E492/G1-reactive fraction in E. multilocularis , named Em492 antigen, was isolated by immunoaffinity chromatography. Em492 antigen had a protein/carbohydrate ratio of 0.25, reacted with a series of lectins, and is related to the laminated layer-associated Em2(G11) antigen. The epitope recognized by MAb E492/G1 was sensitive to sodium periodate but was not affected by protease treatment. Anti-Em492 immunoglobulin G1 (IgG1) and IgG2 and, at lower levels, IgG3 were found in sera of mice suffering from experimentally induced secondary, but not primary, AE. However, with regard to cellular immunity, a suppressive effect on concanavalin A- or crude parasite extract-induced splenocyte proliferation in these mice was observed upon addition of Em492 antigen, but trypan blue exclusion tests and transmission electron microscopy failed to reveal any cytotoxic effect in Em492 antigen-treated spleen cells. This indicated that Em492 antigen could be modulating the periparasitic cellular environment during E. multilocularis infection through as yet unidentified mechanisms and could be one of the factors contributing to immunosuppressive events that occur at the host-parasite interface.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3