Proteomic Analysis of Plasma-Derived Extracellular Vesicles From Mice With Echinococcus granulosus at Different Infection Stages and Their Immunomodulatory Functions

Author:

Shi Chunli,Zhou Xiaojing,Yang Wenjuan,Wu Jianwen,Bai Min,Zhang Ying,Zhao Wei,Yang Hui,Nagai Atsushi,Yin Mei,Gao Xiaoping,Ding Shuqin,Zhao Jiaqing

Abstract

The globally distributed cystic echinococcosis (CE) is caused by the larval stage of Echinococcus granulosus (E. granulosus), a cosmopolitan and zoonotic disease with potentially life-threatening complications in humans. The emerging roles for extracellular vesicles (EVs) in parasitic infection include transferring proteins and modifying host cell gene expression to modulate host immune responses. Few studies focused on the host-derived EVs and its protein profiles. We focused on the EVs from mouse infected with E. granulosus at different stages. ExoQuick kit was used for isolating EVs from mouse plasma and ExoEasy Maxi kit was used for isolating protoscolex culture supernatant (PCS) and hydatid cyst fluid (HCF). Firstly, EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and immunoblot. Secondly, the proteins of plasma EVs were identified using liquid chromatography-tandem mass spectrometry (LC–MS/MS). The resulting LC–MS/MS data were processed using Maxquant search engine (v 1.5.2.8). Tandem mass spectra were researched against the mice and E. granulosus proteins database in the NCBI. The differentially expressed proteins are performed by proteomic label-free quantitative analysis and bioinformatics. Thirdly, in vitro experiment, the results of co-culture of plasma EVs and spleen mononuclear cells showed that 7W-EVs can increase the relative abundance of regulatory T (Treg) cells and IL-10. We further verified that EVs can be internalized by CD4+ and CD8+ T cells, B cells, and myeloid-derived suppressor cells (MDSC). These results implied host-derived EVs are multidirectional immune modulators. The findings can contribute to a better understanding of the role of host-derived EVs which are the optimal vehicle to transfer important cargo into host immune system. In addition, we have found several important proteins associated with E. granulosus and identified in infected mouse plasma at different stages. Furthermore, our study further highlighted the proteomics and immunological function of EVs from mouse infected with E. granulosus protoscoleces at different infection stages. We have laid a solid foundation for the role of EVs in cystic echinococcosis in the future research and supplemented a unique dataset for this E. granulosus.

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3