A Dominant-Negative Mutant of rab5 Inhibits Infection of Cells by Foot-and-Mouth Disease Virus: Implications for Virus Entry

Author:

Johns Helen L.1,Berryman Stephen1,Monaghan Paul1,Belsham Graham J.12,Jackson Terry1

Affiliation:

1. Division of Microbiology, Institute for Animal Health, Pirbright, Surrey GU24 0NF, United Kingdom

2. National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark

Abstract

ABSTRACT Foot-and-mouth disease virus (FMDV) can use a number of different integrins (αvβ1, αvβ3, αvβ6, and αvβ8) as receptors to initiate infection. Infection mediated by αvβ6 is known to occur by clathrin-mediated endocytosis and is dependent on the acidic pH within endosomes. On internalization, virus is detected rapidly in early endosomes (EE) and subsequently in perinuclear recycling endosomes (PNRE), but not in late endosomal compartments. Due to the extreme sensitivity of FMDV to acidic pH, it is thought that EE can provide a pH low enough for infection to occur; however, definitive proof that infection takes place from within these compartments is still lacking. Here we have investigated the intracellular transport steps required for FMDV infection of IBRS-2 cells, which express αvβ8 as their FMDV receptor. These experiments confirmed that FMDV infection mediated by αvβ8 is also dependent on clathrin-mediate endocytosis and an acidic pH within endosomes. Also, the effect on FMDV infection of dominant-negative (DN) mutants of cellular rab proteins that regulate endosomal traffic was examined. Expression of DN rab5 reduced the number of FMDV-infected cells by 80%, while expression of DN rab4 or DN rab7 had virtually no effect on infection. Expression of DN rab11 inhibited infection by FMDV, albeit to a small extent (∼35%). These results demonstrate that FMDV infection takes place predominantly from within EE and does not require virus trafficking to the late endosomal compartments. However, our results suggest that infection may not be exclusive to EE and that a small amount of infection could occur from within PNRE.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3