Affiliation:
1. Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, Texas 77030
Abstract
ABSTRACT
The Min system regulates the positioning of the cell division site in many bacteria. In
Escherichia coli
, MinD migrates rapidly from one cell pole to the other. In conjunction with MinC, MinD helps to prevent unwanted FtsZ rings from assembling at the poles and to stabilize their positioning at midcell. Using time-lapse microscopy of growing and dividing cells expressing a
gfp-minD
fusion, we show that green fluorescent protein (GFP)-MinD often paused at midcell in addition to at the poles, and the frequency of midcell pausing increased as cells grew longer and cell division approached. At later stages of septum formation, GFP-MinD often paused specifically on only one side of the septum, followed by migration to the other side of the septum or to a cell pole. About the time of septum closure, this irregular pattern often switched to a transient double pole-to-pole oscillation in the daughter cells, which ultimately became a stable double oscillation. The splitting of a single MinD zone into two depends on the developing septum and is a potential mechanism to explain how MinD is distributed equitably to both daughter cells. Septal pausing of GFP-MinD did not require MinC, suggesting that MinC-FtsZ interactions do not drive MinD-septal interactions, and instead MinD recognizes a specific geometric, lipid, and/or protein target at the developing septum. Finally, we observed regular end-to-end oscillation over very short distances along the long axes of minicells, supporting the importance of geometry in MinD localization.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference37 articles.
1. Roles of FtsA and FtsZ in Activation of Division Sites
2. Bernhardt, T. G., and P. A. de Boer. 2005. SlmA, a nucleoid-associated, FtsZ-binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18 : 555-564.
3. Towards Single-Copy Gene Expression Systems Making Gene Cloning Physiologically Relevant: Lambda InCh, a Simple
Escherichia coli
Plasmid-Chromosome Shuttle System
4. Bramkamp, M., R. Emmins, L. Weston, C. Donovan, R. A. Daniel, and J. Errington. 2008. A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol. Microbiol. 70 : 1556-1569.
5. Corbin, B. D., X.-C. Yu, and W. Margolin. 2002. Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J. 21 : 1988-2008.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献