Growth-dependent concentration gradient of the oscillating Min system inEscherichia coli

Author:

Parada ClaudiaORCID,Yan Ching-Cher SandersORCID,Hung Cheng-YuORCID,Tu I-PingORCID,Hsu Chao-PingORCID,Shih Yu-LingORCID

Abstract

SummaryThe Min system contributes to the spatiotemporal regulation of division sites inEscherichia coli. The MinD and MinE proteins of this system self-organize into oscillatory waves in the form of concentration gradients. How the intracellular Min protein concentration gradients are coordinated with cell growth to achieve spatiotemporal accuracy of cell division is unknown. Here, we report that the MinD concentration gradient becomes progressively steeper as cells elongate, suggesting that the division inhibitory activity at the midcell also decreases with cell growth. Interestingly, the oscillation period appears relatively stable across different cell lengths. Similar features were found in cells under carbon stress conditions, but the gradient was even steeper, likely favoring division at shorter cell lengths. The length-dependent variation of the concentration gradient was further examinedin silicousing a reaction-diffusion model, which not only supported the above features, but also revealed a decrease in the midcell concentration as the shape of the gradient becomes steeper in growing cells. This growth-dependent regulation of the midcell concentration of MinD may be coupled with the FtsZ ring formation through the MinD-interacting protein MinC. We found that the variable concentration gradients occur by coordinating the reaction rates of the recruitment of MinD and MinE to the membrane and the recharging of MinD with ATP in the cytoplasm. In conclusion, this work uncovers the plasticity of MinD concentration gradients during interpolar oscillations throughout cell growth, an intrinsic property integrated during cell division.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3