Rapid, Sensitive, and Specific Escherichia coli H Antigen Typing by Matrix-Assisted Laser Desorption Ionization–Time of Flight-Based Peptide Mass Fingerprinting

Author:

Chui Huixia12,Chan Michael1,Hernandez Drexler1,Chong Patrick1,McCorrister Stuart1,Robinson Alyssia1,Walker Matthew1,Peterson Lorea A. M.1,Ratnam Sam3,Haldane David J. M.4,Bekal Sadjia5,Wylie John6,Chui Linda7,Westmacott Garrett1,Xu Bianli2,Drebot Mike18,Nadon Celine18,Knox J. David18,Wang Gehua1,Cheng Keding19

Affiliation:

1. National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada

2. Henan Centre of Disease Control and Prevention, Henan Province, China

3. Newfoundland and Labrador Public Health Laboratory, St. John's, NL, Canada

4. Nova Scotia Provincial Public Health Laboratory Network, Halifax, NS, Canada

5. Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada

6. Cadham Provincial Laboratory, Winnipeg, MB, Canada

7. Provincial Laboratory for Public Health, University of Alberta Hospital, Edmonton, AB, Canada

8. Department of Medical Microbiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada

9. Department of Human Anatomy and Cell Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada

Abstract

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has gained popularity in recent years for rapid bacterial identification, mostly at the genus or species level. In this study, a rapid method to identify the Escherichia coli flagellar antigen (H antigen) at the subspecies level was developed using a MALDI-TOF MS platform with high specificity and sensitivity. Flagella were trapped on a filter membrane, and on-filter trypsin digestion was performed. The tryptic digests of each flagellin then were collected and analyzed by MALDI-TOF MS through peptide mass fingerprinting. Sixty-one reference strains containing all 53 H types and 85 clinical strains were tested and compared to serotyping designations. Whole-genome sequencing was used to resolve conflicting results between the two methods. It was found that DHB (2,5-dihydroxybenzoic acid) worked better than CHCA (α-cyano-4-hydroxycinnamic acid) as the matrix for MALDI-TOF MS, with higher confidence during protein identification. After method optimization, reference strains representing all 53 E. coli H types were identified correctly by MALDI-TOF MS. A custom E. coli flagellar/H antigen database was crucial for clearly identifying the E. coli H antigens. Of 85 clinical isolates tested by MALDI-TOF MS-H, 75 identified MS-H types (88.2%) matched results obtained from traditional serotyping. Among 10 isolates where the results of MALDI-TOF MS-H and serotyping did not agree, 60% of H types characterized by whole-genome sequencing agreed with those identified by MALDI-TOF MS-H, compared to only 20% by serotyping. This MALDI-TOF MS-H platform can be used for rapid and cost-effective E. coli H antigen identification, especially during E. coli outbreaks.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3