Affiliation:
1. Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
Abstract
ABSTRACT
Tuberculosis (TB) remains an enormous global health problem, and a new vaccine against TB more potent than the current inadequate vaccine,
Mycobacterium
bovis
BCG, is urgently needed. We describe a recombinant BCG vaccine (rBCG30) expressing and secreting the 30-kDa major secretory protein of
Mycobacterium tuberculosis
, the primary causative agent of TB, that affords greater survival after challenge than parental BCG in the highly demanding guinea pig model of pulmonary TB. Animals immunized with rBCG30 and then challenged by aerosol with a highly virulent strain of
M. tuberculosis
survived significantly longer than animals immunized with conventional BCG. The parental and recombinant vaccine strains are comparably avirulent in guinea pigs, as they display a similar pattern of growth and clearance in the lung, spleen, and regional lymph nodes. The pMTB30 plasmid encoding the 30-kDa protein is neither self-transmissible nor mobilizable to other bacteria, including mycobacteria. The pMTB30 plasmid can be stably maintained in
Escherichia coli
but is expressed only in mycobacteria. The recombinant and parental strains are sensitive to the same antimycobacterial antibiotics. rBCG30, the first vaccine against TB more potent than nearly century-old BCG, is being readied for human clinical trials.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Reference27 articles.
1. Bachrach, G., M. J. Colston, H. Bercovier, D. Bar-Nir, C. Anderson, and K. G. Papavinasasundaram. 2000. A new single-copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon. Microbiology146:297-303.
2. Belisle, J. T., V. D. Vissa, T. Sievert, K. Takayama, P. J. Brennan, and G. S. Besra. 1997. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science276:1420-1422.
3. Blander, S. J., and M. A. Horwitz. 1989. Vaccination with the major secretory protein of Legionella pneumophila induces cell-mediated and protective immunity in a guinea pig model of Legionnaires' disease. J. Exp. Med.169:691-705.
4. Blander, S. J., and M. A. Horwitz. 1991. Vaccination with the major secretory protein of Legionella induces humoral and cell-mediated immune responses and protective immunity across different serogroups of Legionella pneumophila and different species of Legionella. J. Immunol.147:285-291.
5. Blander, S. J., and M. A. Horwitz. 1993. The major cytoplasmic membrane protein of Legionella pneumophila, a genus common antigen and member of the hsp 60 family of heat shock proteins, induces protective immunity in a guinea pig model of Legionnaires' disease. J. Clin. Investig.91:717-723.
Cited by
185 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献