Model of the TVA Receptor Determinants Required for Efficient Infection by Subgroup A Avian Sarcoma and Leukosis Viruses

Author:

Melder Deborah C.,Pike Gennett M.,VanBrocklin Matthew W.,Federspiel Mark J.

Abstract

ABSTRACTThe study of the interactions of subgroup A avian sarcoma and leucosis viruses [ASLV(A)] with the TVA receptor required to infect cells offers a powerful experimental model of retroviral entry. Several regions and specific residues in the TVA receptor have previously been identified to be critical determinants of the binding affinity with ASLV(A) envelope glycoproteins and to mediate efficient infection. Two homologs of the TVA receptor have been cloned: the original quail TVA receptor, which has been the basis for most of the initial characterization of the ASLV(A) TVA, and the chicken TVA receptor, which is 65% identical to the quail receptor overall but identical in the region thought to be critical for infection. Our previous work characterized three mutant ASLV(A) isolates that could efficiently bind and infect cells using the chicken TVA receptor homolog but not using the quail TVA receptor homolog, with the infectivity of one mutant virus being >500-fold less with the quail TVA receptor. The mutant viruses contained mutations in the hr1 region of the surface glycoprotein. Using chimeras of the quail and chicken TVA receptors, we have identified new residues of TVA critical for the binding affinity and entry of ASLV(A) using the mutant glycoproteins and viruses to probe the function of those residues. The quail TVA receptor required changes at residues 10, 14, and 31 of the corresponding chicken TVA residues to bind wild-type and mutant ASLV(A) glycoproteins with a high affinity and recover the ability to mediate efficient infection of cells. A model of the TVA determinants critical for interacting with ASLV(A) glycoproteins is proposed.IMPORTANCEA detailed understanding of how retroviruses enter cells, evolve to use new receptors, and maintain efficient entry is crucial for identifying new targets for combating retrovirus infection and pathogenesis, as well as for developing new approaches for targeted gene delivery. Since all retroviruses share an envelope glycoprotein organization, they likely share a mechanism of receptor triggering to begin the entry process. Multiple, noncontiguous interaction determinants located in the receptor and the surface (SU) glycoprotein hypervariable domains are required for binding affinity and to restrict or broaden receptor usage. In this study, further mechanistic details of the entry process were elucidated by characterizing the ASLV(A) glycoprotein interactions with the TVA receptor required for entry. The ASLV(A) envelope glycoproteins are organized into functional domains that allow changes in receptor choice to occur by mutation and/or recombination while maintaining a critical level of receptor binding affinity and an ability to trigger glycoprotein conformational changes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference38 articles.

1. Virus-cell and cell-cell fusion;Annu Rev Cell Dev Biol,1996

2. Virus entry and uncoating,2001

3. Viral entry and receptors,1997

4. Cellular receptors and viral glycoproteins involved in retrovirus entry,1992

5. Avian sarcoma and leukosis virus-receptor interactions: from classical genetics to novel insights into virus-cell membrane fusion;Virology,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3