Enhancing the Secretion Efficiency and Thermostability of a Bacillusderamificans Pullulanase Mutant (D437H/D503Y) by N-Terminal Domain Truncation

Author:

Duan Xuguo1,Wu Jing1

Affiliation:

1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China

Abstract

ABSTRACT Pullulanase (EC 3.2.1.41), an important enzyme in the production of starch syrup, catalyzes the hydrolysis of α-1,6 glycosidic bonds in complex carbohydrates. A double mutant (DM; D437H/D503Y) form of Bacillus deramificans pullulanase was recently constructed to enhance the thermostability and catalytic efficiency of the enzyme (X. Duan, J. Chen, and J. Wu, Appl Environ Microbiol 79:4072–4077, 2013, http://dx.doi.org/10.1128/AEM.00457-13 ). In the present study, three N-terminally truncated variants of this DM that lack the CBM41 domain (DM-T1), the CBM41 and X25 domains (DM-T2), or the CBM41, X25, and X45 domains (DM-T3) were constructed. Upon expression, DM-T3 existed as inclusion bodies, while 72.8 and 74.8% of the total pullulanase activities of DM-T1 and DM-T2, respectively, were secreted into the medium. These activities are 2.8- and 2.9-fold that of the DM enzyme, respectively. The specific activities of DM-T1 and DM-T2 were 380.0 × 10 8 and 449.3 × 10 8 U · mol −1 , respectively, which are 0.94- and 1.11-fold that of the DM enzyme. DM-T1 and DM-T2 retained 50% of their activity after incubation at 60°C for 203 and 160 h, respectively, which are 1.7- and 1.3-fold that of the DM enzyme. Kinetic studies showed that the K m values of DM-T1 and DM-T2 were 1.5- and 2.7-fold higher and the K cat / K m values were 11 and 50% lower, respectively, than those of the DM enzyme. Furthermore, DM-T1 and DM-T2 produced d -glucose contents of 95.0 and 94.1%, respectively, in a starch saccharification reaction, which are essentially identical to that produced by the DM enzyme (95%). The enhanced secretion and improved thermostability of the truncation mutant enzymes make them more suitable than the DM enzyme for industrial processes.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3