IdeR, a DtxR Family Iron Response Regulator, Controls Iron Homeostasis, Morphological Differentiation, Secondary Metabolism, and the Oxidative Stress Response in Streptomyces avermitilis

Author:

Cheng Yaqing1,Yang Renjun1,Lyu Mengya1,Wang Shiwei2,Liu Xingchao1,Wen Ying1,Song Yuan1,Li Jilun1,Chen Zhi1

Affiliation:

1. State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China

2. School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China

Abstract

Iron is essential to almost all organisms, but in the presence of oxygen, iron is both poorly available and potentially toxic. Streptomyces species are predominantly present in soil where the environment is complex and fluctuating. So far, the mechanism of iron homeostasis in Streptomyces spp. remains to be elucidated. Here, we characterized the regulatory role of IdeR in the avermectin-producing organism S. avermitilis . IdeR maintains intracellular iron levels by regulating genes involved in iron absorption and storage. IdeR also directly regulates morphological differentiation, secondary metabolism, and central metabolism. ideR is under the positive control of OxyR and is indispensable for an efficient response to oxidative stress. This investigation uncovered that IdeR acts as a global regulator coordinating iron homeostasis, morphological differentiation, secondary metabolism, and oxidative stress response in Streptomyces species. Elucidation of the pleiotropic regulation function of IdeR provides new insights into the mechanisms of how Streptomyces spp. adapt to the complex environment.

Funder

National Natural Science Foundation of China

CAU | State Key Laboratory of Agrobiotechnology, China Agricultural University

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3