Lysine-2,3-Aminomutase and β-Lysine Acetyltransferase Genes of Methanogenic Archaea Are Salt Induced and Are Essential for the Biosynthesis of
N
ε
-Acetyl-β-Lysine and Growth at High Salinity
-
Published:2003-10
Issue:10
Volume:69
Page:6047-6055
-
ISSN:0099-2240
-
Container-title:Applied and Environmental Microbiology
-
language:en
-
Short-container-title:Appl Environ Microbiol
Author:
Pflüger K.1, Baumann S.1, Gottschalk G.2, Lin W.3, Santos H.4, Müller V.1
Affiliation:
1. Section of Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, 80638 Munich 2. Göttingen Genomics Laboratory, Georg-August-Universität Göttingen, 37077 Göttingen, Germany 3. Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605 4. Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-156 Oeiras, Portugal
Abstract
ABSTRACT
The compatible solute
N
ε
-acetyl-β-lysine is unique to methanogenic archaea and is produced under salt stress only. However, the molecular basis for the salt-dependent regulation of
N
ε
-acetyl-β-lysine formation is unknown. Genes potentially encoding lysine-2,3-aminomutase (
ablA
) and β-lysine acetyltransferase (
ablB
), which are assumed to catalyze
N
ε
-acetyl-β-lysine formation from α-lysine, were identified on the chromosomes of the methanogenic archaea
Methanosarcina mazei
Gö1,
Methanosarcina acetivorans
,
Methanosarcina barkeri
,
Methanococcus jannaschii
, and
Methanococcus maripaludis
. The order of the two genes was identical in the five organisms, and the deduced proteins were very similar, indicating a high degree of conservation of structure and function. Northern blot analysis revealed that the two genes are organized in an operon (termed the
abl
operon) in
M. mazei
Gö1. Expression of the
abl
operon was strictly salt dependent. The
abl
operon was deleted in the genetically tractable
M. maripaludis
. Δ
abl
mutants of
M. maripaludis
no longer produced
N
ε
-acetyl-β-lysine and were incapable of growth at high salt concentrations, indicating that the
abl
operon is essential for
N
ε
-acetyl-β-lysine synthesis. These experiments revealed the first genes involved in the biosynthesis of compatible solutes in methanogens.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference54 articles.
1. Angus-Hill, M. L., R. N. Dutnall, S. T. Tafrov, R. Sternglanz, and V. Ramakrishnan. 1999. Crystal structure of the histone acetyltransferase HpaII: a tetrameric member of the Gcn5-related N-acetyltransferase superfamily. J. Mol. Biol.294:1311-1325. 2. Bohnert, H. J. 1995. Adaptations to environmental stresses. Plant Cell7:1099-1111. 3. Bult, C. J., O. White, G. J. Olsen, L. X. Zhou, R. D. Fleischmann, G. G. Sutton, J. A. Blake, L. M. Fitzgerald, R. A. Clayton, J. D. Gocayne, A. R. Kerlavage, B. A. Dougherty, J. F. Tomb, M. D. Adams, C. I. Reich, R. Overbeek, E. F. Kirkness, K. G. Weinstock, J. M. Merrick, A. Glodek, J. L. Scott, N. S. M. Geoghagen, J. F. Weidman, J. L. Fuhrmann, D. Nguyen, T. R. Utterback, J. M. Kelley, J. D. Peterson, P. W. Sadow, M. C. Hanna, M. D. Cotton, K. M. Roberts, M. A. Hurst, B. P. Kaine, M. Borodovsky, H. P. Klenk, C. M. Fraser, H. O. Smith, C. R. Woese, and J. G. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii.Science273:1058-1073. 4. Chirpich, T. P., V. Zappia, R. N. Costilow, and H. A. Barker. 1970. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J. Biol. Chem.245:1778-1789. 5. Ciulla, R. A., S. Burggraf, K. O. Stetter, and M. F. Roberts. 1994. Occurrence of di-myo-inositol-1-1′-phosphate in Methanococcus igneus.Appl. Environ. Microbiol.176:3177-3187.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|