Osmoregulation in freshwater anaerobic methane-oxidizing archaea under salt stress

Author:

Echeveste Medrano Maider J12,Leu Andy O34,Pabst Martin56,Lin Yuemei56,McIlroy Simon J34,Tyson Gene W34,van Ede Jitske56,Sánchez-Andrea Irene78910,Jetten Mike S M12,Jansen Robert12,Welte Cornelia U12

Affiliation:

1. Department of Microbiology , Radboud Institute for Biological and Environmental Sciences (RIBES), , Heyendaalseweg 135, 6525AJ Nijmegen , The Netherlands

2. Radboud University , Radboud Institute for Biological and Environmental Sciences (RIBES), , Heyendaalseweg 135, 6525AJ Nijmegen , The Netherlands

3. Centre for Microbiome Research (CMR) , School of Biomedical Sciences, , 37 Kent Street, Woolloongabba, QLD 4102 , Australia

4. Queensland University of Technology (QUT), Translational Research Institute (TRI) , School of Biomedical Sciences, , 37 Kent Street, Woolloongabba, QLD 4102 , Australia

5. Department of Environmental Biotechnology , , Van der Maasweg 9, 2629HZ Delft , The Netherlands

6. TU-Delft University , , Van der Maasweg 9, 2629HZ Delft , The Netherlands

7. Department of Environmental Sciences for Sustainability , , C. Cardenal Zúñiga 12, 40003 Segovia , Spain

8. IE University , , C. Cardenal Zúñiga 12, 40003 Segovia , Spain

9. Laboratory of Microbiology , , Stippeneng 4, 6708WE Wageningen , The Netherlands

10. Wageningen University , , Stippeneng 4, 6708WE Wageningen , The Netherlands

Abstract

Abstract Climate change–driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-β-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-β-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.

Funder

NWO-VIDI

Australian Research Council

ERC

NWO

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3