Anaerobic Oxidation of Methane: Progress with an Unknown Process

Author:

Knittel Katrin1,Boetius Antje1

Affiliation:

1. Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;

Abstract

Methane is the most abundant hydrocarbon in the atmosphere, and it is an important greenhouse gas, which has so far contributed an estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron acceptor according to the net reaction: [Formula: see text] This review summarizes what is known and unknown about AOM on earth and its key catalysts, the ANME clades and their bacterial partners.

Publisher

Annual Reviews

Subject

Microbiology

Cited by 1401 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3