Conditional Deletion of Activating Protein 2α (AP-2α) in the Developing Retina Demonstrates Non-Cell-Autonomous Roles for AP-2α in Optic Cup Development

Author:

Bassett Erin A.1,Pontoriero Giuseppe F.1,Feng Weiguo2,Marquardt Till3,Fini M. Elizabeth4,Williams Trevor2,West-Mays Judith A.1

Affiliation:

1. Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada

2. Departments of CFB and CDB, University of Colorado Health Sciences Center, Denver, Colorado

3. The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California

4. McKnight Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida

Abstract

ABSTRACT Activating protein 2α (AP-2α) is known to be expressed in the retina, and AP-2α-null mice exhibit defects in the developing optic cup, including patterning of the neural retina (NR) and a replacement of the dorsal retinal pigmented epithelium (RPE) with NR. In this study, we analyzed the temporal and spatial retinal expression patterns of AP-2α and created a conditional deletion of AP-2α in the developing retina. AP-2α exhibited a distinct expression pattern in the developing inner nuclear layer of the retina, and colocalization studies indicated that AP-2α was exclusively expressed in postmitotic amacrine cell populations. Targeted deletion of AP-2α in the developing retina did not result in observable retinal defects. Further examination of AP-2α-null mutants revealed that the severity of the RPE defect was variable and, although defects in retinal lamination occur at later embryonic stages, earlier stages showed normal lamination and expression of markers for amacrine and ganglion cells. Together, these data demonstrate that, whereas AP-2α alone does not play an intrinsic role in retinogenesis, it has non-cell-autonomous effects on optic cup development. Additional expression analyses showed that multiple AP-2 proteins are present in the developing retina, which will be important to future studies.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3