Pax6 is required for establishing naso-temporal and dorsal characteristics of the optic vesicle

Author:

Bäumer Nicole12,Marquardt Till132,Stoykova Anastassia1,Ashery-Padan Ruth14,Chowdhury Kamal1,Gruss Peter1

Affiliation:

1. Max-Planck-Institute of Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg 11, D-37077 Göttingen, Germany

2. These authors contributed equally to this work

3. Present address: The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

4. Present address: Sackler Faculty of Medicine, Department of Human Genetics and Molecular Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel

Abstract

The establishment of polarity is an important step during organ development. We assign a function for the paired and homeodomain transcription factor Pax6 in axis formation in the retina. Pax6 is a key factor of the highly conserved genetic network implicated in directing the initial phases of eye development. We recently demonstrated that Pax6 is also essential for later aspects of eye development, such as lens formation and retinogenesis. In this study, we present evidence that a highly conserved intronic enhancer, α, in the Pax6 gene is essential for the establishment of a distalhigh-proximallow gradient of Pax6 activity in the retina. In the mature retina, the activity mediated by the α-enhancer defines a population of retinal ganglion cells that project to two sickle-shaped domains in the superior colliculus and lateral geniculate nucleus. Deletion of the α-enhancer in vivo revealed that retinal Pax6 expression is regulated in two complementary topographic domains. We found that Pax6 activity is required for the establishment, as well as the maintenance of dorsal and nasotemporal characteristics in the optic vesicle and, later, the optic cup.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3