Affiliation:
1. Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
Abstract
ABSTRACT
The influenza virus nucleoprotein (NP) is a single-strand-RNA-binding protein associated with genome and antigenome RNA and is one of the four virus proteins necessary for transcription and replication of viral RNA. To better characterize the mechanism by which NP binds RNA, we undertook a physical and mutational analysis of the polypeptide, with the strategy of identifying first the regions in direct contact with RNA, then the classes of amino acids involved, and finally the crucial residues by mutagenesis. Chemical fragmentation and amino acid sequencing of NP that had been UV cross linked to radiolabelled RNA showed that protein-RNA contacts occur throughout the length of the polypeptide. Chemical modification experiments implicated arginine but not lysine residues as important for RNA binding, while RNA-dependent changes in the intrinsic fluorescence spectrum of NP suggested the involvement of tryptophan residues. Supporting these observations, single-codon mutagenesis identified five tryptophan, one phenylalanine, and two arginine residues as essential for high-affinity RNA binding at physiological temperature. In addition, mutants unable to bind RNA in vitro were unable to support virus gene expression in vivo. The mutationally sensitive residues are not localized to any particular region of NP but instead are distributed throughout the protein. Overall, these data are inconsistent with previous models suggesting that the NP-RNA interaction is mediated by a discrete N-terminal domain. Instead, we propose that high-affinity binding of RNA by NP requires the concerted interaction of multiple regions of the protein with RNA and that the individual protein-RNA contacts are mediated by a combination of electrostatic interactions between positively charged residues and the phosphate backbone and planar interactions between aromatic side chains and bases.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献