Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein

Author:

Albo C1,Valencia A1,Portela A1

Affiliation:

1. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.

Abstract

The influenza A virus nucleoprotein (NP) has been examined with regard to its RNA-binding characteristics. NP, purified from virions and devoid of RNA, bound synthetic RNAs in vitro and interacted with the ribonucleotide homopolymers poly(A), poly(G), poly(U), and poly(C) in a salt-dependent manner, showing higher binding affinity for polypyrimidine homopolymers. To map the NP regions involved in RNA binding, a series of deleted forms of the NP were prepared, and these truncated polypeptides were tested for their ability to bind poly(U) and poly(C) homopolymers linked to agarose beads. Proteins containing deletions at the N terminus of the NP molecule showed reduced RNA-binding activity, indicating that this part of the protein was required to bind RNA. To identify the NP region or regions which directly interact with RNA, proteins having the maltose-binding protein fused with various NP fragments were obtained and tested for binding to radioactively labeled RNAs in three different assays: (i) nitrocellulose filter binding assays, (ii) gel shift assays, and (iii) UV light-induced cross-linking experiments. A maltose-binding protein fusion containing the N-terminal 180 amino acids of NP behaved as an RNA-binding protein in the three assays, demonstrating that the N terminus of NP can directly interact with RNA. This NP region could be further subdivided into two smaller regions (amino acids 1 to 77 and 79 to 180) that also retained RNA-binding activity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3